• 2391阅读
  • 1回复

[数学]高中三角函数大全 查看手机触屏版 [复制链接]

上一主题 下一主题
离线天高云淡
 

只看楼主 倒序阅读 0楼 发表于: 2018-09-30
公式表达式
乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理
判别式 b2-4a=0 注:方程有相等的两实根
b2-4ac>0 注:方程有一个实根
b2-4ac<0 注:方程有共轭复数根

三角函数公式
两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

正切定理:
[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h
-----------------------三角函数        积化和差 和差化积公式
记不住就自己推,用两角和差的正余弦:
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
这两式相加或相减,可以得到2组积化和差:
相加:cosAcosB=[cos(A+B)+cos(A-B)]/2
相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2
sin(A+B)=sinAcosB+sinBcosA
sin(A-B)=sinAcosB-sinBcosA
这两式相加或相减,可以得到2组积化和差:
相加:sinAcosB=[sin(A+B)+sin(A-B)]/2
相减:sinBcosA=[sin(A+B)-sin(A-B)]/2
这样一共4组积化和差,然后倒过来就是和差化积了
不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下
正加正 正在前
正减正 余在前
余加余 都是余
余减余 没有余还负
正余正加 余正正减
余余余加 正正余减还负
.
3.三角形中的一些结论:(不要求记忆)    
(1)anA+tanB+tanC=tanA·tanB·tanC
(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)    
(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1    
(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC    
(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1
...........................
已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ
解:sinα=m sin(α+2β)
sin(a+β-β)=msin(a+β+β)
sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβ
sin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1)
tan(α+β)=(1+m)/(1-m)tanβ
微信公众号:jiyifa_com 逍遥右脑
 
离线九日

只看该作者 1楼 发表于: 2019-01-21
很全的公式集,谢谢楼主的辛苦整理,慷慨分享!
快速回复
限100 字节
 
上一个 下一个